High Accuracy Method for Magnetohydrodynamics System in Elsässer Variables
نویسندگان
چکیده
The MHD flows are governed by the Navier-Stokes equations coupled with the Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned method for the evolutionary full MHD equations, at high magnetic Reynolds number, in the Elsässer variables. The method we propose is a defect correction second order scheme, and entails the implicit discretization of the subproblem terms and the explicit discretization of coupling terms.
منابع مشابه
Partitioned Second Order Method for Magnetohydrodynamics in Elsässer Fields
Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm’s law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the comput...
متن کاملAdaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressib...
متن کاملDepletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.
It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the...
متن کاملPrediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network
This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.
متن کاملPrimitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics
Conservative numerical schemes for general relativistic magnetohydrodynamics (GRMHD) require a method for transforming between “conserved” variables such as momentum and energy density and “primitive” variables such as restmass density, internal energy, and components of the four-velocity. The forward transformation (primitive to conserved) has a closed-form solution, but the inverse transforma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 15 شماره
صفحات -
تاریخ انتشار 2015